THE STRUCTURE OF ORTHOGONAL GROUPS OVER ARBITRARY COMMUTATIVE RINGS

Citation:

Li Fuan.THE STRUCTURE OF ORTHOGONAL GROUPS OVER ARBITRARY COMMUTATIVE RINGS[J].Chinese Annals of Mathematics B,1989,10(3):341~350
Page view: 917        Net amount: 798

Authors:

Li Fuan;

Foundation:

Projects supported by the Science Fund of the Chinese Acsdemy of Sciences
Abstract: Let $R$ be an arbitrary commutative ring, and $n$ an integer $\[ \ge 3\]$. It is proved for any ideal J of $R$ that $$\[\begin{array}{*{20}{c}} {E{O_{2n}}(R,J) = [E{O_{2n}}(R),E{O_{2n}}(J)] = [E{O_{2n}}(R),E{O_{2n}}(R,J)]}\{ = [E{O_{2n}}(R),{O_{2n}}(R,J)] = [{O_{2n}}(R),E{O_{2n}}(R,J)]} \end{array}\]$$ In particular, $\[{E{O_{2n}}(R,J)}\]$ is a normal subgroup of $\[{{O_{2n}}(R)}\]$. Furthermore, the problem of normal subgroups of $\[{{O_{2n}}(R)}\]$ has an affirmative solution if and only if $\[aB \cap Ann(2) = {a^2}Ann(2)\]$ for each $a$ in $R$. In particular, if 2 is not a zero divisor in R, then the problem of normal subgroups of $\[{{O_{2n}}(R)}\]$ has an affirmative solution.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持