A NOTE TO THE NEVANJUNNA'S FUNDAMENTAL THEOREM

Citation:

Zhong Changyong.A NOTE TO THE NEVANJUNNA'S FUNDAMENTAL THEOREM[J].Chinese Annals of Mathematics B,1989,10(3):351~360
Page view: 892        Net amount: 813

Authors:

Zhong Changyong;
Abstract: In this paper, the author extends Nevanlinna's second fundamental theorem and establishes the following inequality: Let $\[p(s,u) = {A_v}(s){u^v} + {A_1}(s){u^{v - 1}} + \cdots + {A_0}(s)\]$ be an irreducible two-variable polynomial and $f(s)$ a transcendental entire function, then $$\[(\nu - 1)T(r,f) < N(r,\frac{1}{{p(z,f(z))}}) + S(r,f)\]$$ with $$\[S(r,f) = O(\log (rT(r,f)))n.e\]$$ where an. "n.e" means that the estimation holds for all large r with possibly an exceptional of finite measure when f is of infinite order.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持