SOME GENERALIZATION OF GRONWALL-BIHARI INTEGRAL INEQUALITIES AND THEIR APPLICATIONS

Citation:

Kong Qingkai,Zhang Binggen.SOME GENERALIZATION OF GRONWALL-BIHARI INTEGRAL INEQUALITIES AND THEIR APPLICATIONS[J].Chinese Annals of Mathematics B,1989,10(3):371~385
Page view: 844        Net amount: 811

Authors:

Kong Qingkai; Zhang Binggen
Abstract: The interest of this paper lies in the estimates of solutions of the three kinds of Gronwan-Bihari integral inequalities: (I) $\[y(x) \le f(x) + \sum\limits_{i = 1}^n {{g_i}(x)\int_0^x {{h_i}(s)y(s)ds,} } \]$ (II)$\[y(x) \le f(x) + g(x)\psi (\int_0^x {h(s)w(y(s))ds} )\]$ (III)$\[y(x) \le f(x) + \sum\limits_{i = 1}^n {{g_i}(x)\int_0^x {{h_i}(s)y(s)ds} + {g_{n + 1}}(x)\psi (\int_0^s {{h_{n + 1}}(s)w(y(t))ds} ).} \]$ The results include some modificstions and generalizations of the results of D. Willett U. D. Dhongade and Zhang Binggen. Furthermore, applying the conclusion on the above inequalities to a Volterra integral equation and a differential equation, the authors obtain some new better results.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持