The Heat Kernel of a Ball in C^n

Citation:

Lu Qikeng(陆启铿).The Heat Kernel of a Ball in C^n[J].Chinese Annals of Mathematics B,1990,11(1):1~14
Page view: 763        Net amount: 882

Authors:

Lu Qikeng(陆启铿);
Abstract: By introducing the horosphere coordinate of a unit ball B^n in C^n and an integral transformation formula of functions in such coordidates, the author constructs the heat kernel H_B^n(z,w,t) of the heat equation associated to the Bergman metric of B^n.That is $H_B^n(z,w,t)=c_n(-1/\pi)^ne^{-n^2t}/\sqrt(t)\int_-\infty^\infty{[1/sh2\sigma\partial/\partial\sigma(1/sh\sigma\partial/\partial)^n-1e^{-\sigma^2/4t}]_{ch2\sigma=ch2r(x,w)+\tau^2}d\tau$ where c_n is a well-defined constant and r(z, w) is the geodesic destanco of two points s and w of B^n and t\in R^+. Since $H_B^m*B^n=H_B^m\cdot H_B^n$ then $G((z_1,z_2),(w_1,w_2))=-\int_0^\infty{H_B^m(z_1,w_1,t)H_B^n(z_2,w_2,t)}dt$ is the Green function of the topological product space B^m*B^n.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持