On the Sectional Curvature of a Riemannian Manifold

Citation:

Bai Zhengguo(白正国).On the Sectional Curvature of a Riemannian Manifold[J].Chinese Annals of Mathematics B,1990,11(1):70~73
Page view: 809        Net amount: 693

Authors:

Bai Zhengguo(白正国);
Abstract: In this papor the author establishes the following 1. If llln(w>‘3) is a cohneeted. Kieinanniah manifold, then the sectional curvature K(p), where p is any plane in T_x(M), is a function of at most n(n-1)/2 variables. More precisely, K(p) depends on at most n(n-l)/2 parameters of group SO(n). 2. Lot M^n(n\leq 3) be a connected Riemannian manifold. If there exists a point x \in M such that the sectional curvature K(p) is-independent of the plane p\in T_x(M), then M is a space of constant curvature. This latter improves a well-known theorem of F. Schur.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持