Global Existence of the Solutions to Nonlinear Hyperbolic Equations in Exterior Domains

Citation:

Chen Yunmei,Gao Jianmin.Global Existence of the Solutions to Nonlinear Hyperbolic Equations in Exterior Domains[J].Chinese Annals of Mathematics B,1990,11(3):315~329
Page view: 827        Net amount: 657

Authors:

Chen Yunmei; Gao Jianmin
Abstract: This paper deals with the following IBV problem of nonlinear hyperbolic equations $\[\left\{ {\begin{array}{*{20}{c}} {{u_{tt}} - \sum\limits_{i,j = 1}^n {{a_{ij}}(u,Du){U_{{x_i}{x_j}}} = b(u,Du),t > 0,x \in \Omega ,} }\{u(0,x) = {u^0}(x),{u_i}(0,x) = {u^1}(v),x \in \Omega ,}\{u(t,x) = 0,t > 0,x \in \partial \Omega ,} \end{array}} \right.\]$ where Q is the exterior domain of a compact set in R^n, and $|a_{ij}(y)-\delta_{ij}|=0(|y|^k),|b(y)|=0(|y|^{k+1})$, near y=0. It is proved that under suitable assumptions on the smoothness, compatibility conditions and the shape of Q, the above problem has a unique global smooth solution for small initial data, in the case that k=l add n\geq 7 or that k=2 and n\geq 4. Moreover, the solution has some decay properties as t->\infinity.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持