Dirichlet Forms and Symmetric Diffusions on a Bounded Domain in R^d

Citation:

Yan Jiaan,Zhang Tusheng.Dirichlet Forms and Symmetric Diffusions on a Bounded Domain in R^d[J].Chinese Annals of Mathematics B,1990,11(4):418~425
Page view: 795        Net amount: 974

Authors:

Yan Jiaan; Zhang Tusheng
Abstract: Let D be a bounded C^3-domain in R^d and (a_ij) be a bounded symmetric matrix defined on D. Consider the symmetric form $\[\varepsilon u,v) = \frac{1}{2}\sum\limits_{i,j = 1}^d {\int_D {{a_{ij}}(x)\frac{{\partial u(x)}}{{\partial {x_i}}}\frac{{\partial v(x)}}{{\partial {x_j}}}dx,u,v \in {H^1}(D)} } \]$ Under some assumptions it is shown that the diffusion process associated with the regular Dirichlet space (\varepsilon,(H^1(D)) on L^2(\bar D) can be characterized as a unique solution of a certain stochastic differential equation.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持