OM AN INVERSE THEOREM OF APPROXIMATION

Citation:

Yang Lihua.OM AN INVERSE THEOREM OF APPROXIMATION[J].Chinese Annals of Mathematics B,1991,12(2):219~229
Page view: 833        Net amount: 963

Authors:

Yang Lihua;
Abstract: The author gives some disagreement to the following result, which is published in [1]. Let ${L_{n}(f)}$ be mass-concerntative,$\phi\rightarrow 0(n\rightarrow \infty), 0<\alpha\leq2$ and $$C^{-1}\leq \phi_{n+1}/\phi_{n}\leq C (n=1,2,\ldots)$$ for some constrant $C>0$. Then for any $f\in C[-2a,2a]$, $$\parallel L_{n}(f)-f\parallel_{C[ a,a]}= O(\phi^{\alpha}_{n})$$ inplies $f \in Lip^{*}\alpha$, where $$Lip*\alpha={f\in C[-2a,2a]|\omega_{2}(f,\delta)_{[-2a,2a]}=O(\delta^{\alpha})}.$$ Then some similar results on $C_{2\pi$ are given, and further some results on $C[-2a,2a]$ are established by adding some proper conditions.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持