ON n- WIDTHS OF PERIODIC FUNCTIONS

Citation:

Chen Hanlin.ON n- WIDTHS OF PERIODIC FUNCTIONS[J].Chinese Annals of Mathematics B,1991,12(3):272~281
Page view: 932        Net amount: 876

Authors:

Chen Hanlin;
Abstract: Let $\[\tilde B_p^{r,1} = \{ f:{f^{(r - 1)}}\]$ is abs. cont. on $I=[a,b]$ is periodic with period H(=b-a),$\[f({x_1}) = 0,\parallel {f^{(r)}}{\parallel _p} \le 1\} \]$, Where $x_{1}$ is any fixed point in $[a,b]$. The author finds the Kolmogorov, Gel'fand, linear, and Berttrstein n-widths of $\[\tilde B_p^{r,1}\]$ in $L^{P}(I)$ for n odd, $\[1 < p < \infty \]$. The optimal subspaces and operators are also found.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持