INVERSE THEOREMS IN $L^{p}$ FOR SOME MULTIDIMENSIONAL POSITIVE LINEAR OPERATORS

Citation:

Zhou Dingxuan.INVERSE THEOREMS IN $L^{p}$ FOR SOME MULTIDIMENSIONAL POSITIVE LINEAR OPERATORS[J].Chinese Annals of Mathematics B,1991,12(4):525~530
Page view: 901        Net amount: 767

Authors:

Zhou Dingxuan;

Foundation:

Projects by supported by the National Natural Science Foundation of China.
Abstract: Let $\[{\{ {L_n}\} _{n \in N}}\]$ be positive linear operators in $\[{L_p}(I),I = [0,1]or[0,\infty )\]$, $I=[0,1]$ or $\[[0,\infty )\]$ This paper considers their variants in $\[{L_p}(I \times I)\]$ $$\[{L_{n,m}}(F;x,y) = {L_n}({L_m}(F(u,v);y);x) = {L_m}({L_n}(F(u,v);x);y),n,m \in N.\]$$ The characterization problem for these operators is solved which gives the inverse theorems in $L_{p}$ for multidimensional Bernstein type operators.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持