WAVELET DECOMPOSITIONS IN $L^2(R^2)$

Citation:

Wu Zhengchang.WAVELET DECOMPOSITIONS IN $L^2(R^2)$[J].Chinese Annals of Mathematics B,1993,14(2):189~196
Page view: 773        Net amount: 667

Authors:

Wu Zhengchang;
Abstract: Let ${V_k}^{+\infinity}_{k=-\infinity}$ be a multiresolution analysis generated by a function $\phi(x)\in L^2(R^2)$. Under this multiresolution framework the key point for studying wavelet decompositions in $L^2(R^2)$ is to study the properties of Wo which is the orthogonal complement of $V_0$ in $V_1:V_1=V_0\oplus W_0$.In this paper the author studies the structure of W_0 and furthermore shows that a box spline of three directions can generate a wavelet decomposition of $L^2(R^2)$.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持