LIFE SPAN OF CLASSICAL SOLUTIONS TO $\[B \simeq Ma{t_m}(kD)\]$ IN TWO SPACE DIMENSIONS

Citation:

Zhou Yi.LIFE SPAN OF CLASSICAL SOLUTIONS TO $\[B \simeq Ma{t_m}(kD)\]$ IN TWO SPACE DIMENSIONS[J].Chinese Annals of Mathematics B,1993,14(2):225~236
Page view: 1123        Net amount: 741

Authors:

Zhou Yi;
Abstract: The author studies the life span of classical solutions to the following Cauchy problem $\[B \simeq Ma{t_m}(kD)\]$, $t=0:u=\epsilon\phi(x),u_t=\epsilon\psi(x),x\in R^2$ where $\phi,\psi\in C_0^\infinity(R^2)$ and not both identically zero,$\[\square = \partial _t^2 - \partial _1^2 - \partial _2^2,p \geqslant 2\]$ is a real number and $\epsilon > 0$ is a small parameter, and obtains respectively upper and lower bounds of the same order of magnitude for the life span for $2\leq p \leq p_0$, where $p_0$ is the positive root of the quadratic $X^2-3X-2=0$.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持