|
| |
HOW BIG ARE THE LAG INCREMENTS OF A 2-PARAMETER WIENER PROCESS? (II) |
| |
Citation: |
Lu Chuanrong.HOW BIG ARE THE LAG INCREMENTS OF A 2-PARAMETER WIENER PROCESS? (II)[J].Chinese Annals of Mathematics B,1993,14(3):347~354 |
Page view: 709
Net amount: 843 |
Authors: |
Lu Chuanrong; |
|
|
Abstract: |
The author investigated how big the lag increments of a 2-parameter Wiener process is in [1]. In this paper the limit inferior results for the lag increments are discussed and the same results as the Wiener process are obtained. For example, if
$\[\mathop {\lim }\limits_{T \to \infty } \{ \log T/{a_T} + \log (\log {b_T}/a_T^{1/2} + 1)\} /\log \log T = r,0 \leqslant r \leqslant \infty \] $
then
$\[\mathop {\lim }\limits_{\overline {T \to \infty } } \mathop {\sup }\limits_{{a_T} \leqslant t \leqslant T} \mathop {\sup }\limits_{t \leqslant s \leqslant T} \mathop {\sup }\limits_{R \in L_s^*(t)} |W(R)|/d(T,t) = {\alpha _r},a.s.,\] $
$\[\mathop {\lim }\limits_{\overline {T \to \infty } } \mathop {\sup }\limits_{{a_T} \leqslant t \leqslant T} \mathop {\sup }\limits_{R \in {{\tilde L}_T}(t)} |W(R)|/d(T,t) = {\alpha _r},a.s.,\] $
where $\alpha _r=(r/(r+1))^{1/2}$, $L*_s(t)$ and $\tider L_T(t)$ are the sets of rectangles which satisfy some conditions. Moreover, the limit inferior results of another class of lag increments are discussed. |
Keywords: |
|
Classification: |
|
|
Download PDF Full-Text
|
|
|
|