|
| |
LOCAL L^p ESTIMATE FOR THE SOLUTION OF $\bar \partial-NEUMANN$ PROBLEM OVER $D_t={(w,z):Rew\leq \frac{|z^m-tw|^2}{m}}$ |
| |
Citation: |
Chen Tianping,Zhang Dezhi.LOCAL L^p ESTIMATE FOR THE SOLUTION OF $\bar \partial-NEUMANN$ PROBLEM OVER $D_t={(w,z):Rew\leq \frac{|z^m-tw|^2}{m}}$[J].Chinese Annals of Mathematics B,1993,14(4):481~496 |
Page view: 751
Net amount: 712 |
Authors: |
Chen Tianping; Zhang Dezhi |
|
|
Abstract: |
Assume that a distribution u satisfies conditions:$\[\bar \partial u = f,u \bot H({D_t})\]$ on domain $D_t,u\in Dom(\bar \partial _0^*),\bar \partial u \in \bar \partial _1^*;\bar \partial f=0,f\bot H^{0,1}$. It is proved that $\phi_1u\inL_{\beta +\frac{1}{2m}-\epsilon}^p$ if $\phi _2f\inL_\beta ^p$,where is the potential space defined in [14]; $\phi _1,\phi _2\in C_c^\infinity(U),\phi _2=1$ on suppt \phi_1;U is a neighbourhood of the origin; \epsilon is a small positive number. This result contains a result of D.C. Chang (in [3]) by setting t = 0. |
Keywords: |
|
Classification: |
|
|
Download PDF Full-Text
|
|
|
|