ON THE CONTACT COHOMOLOGY OF ISOLATED HYPERSURFACE SINGULARITIES

Citation:

Xiao Erjian.ON THE CONTACT COHOMOLOGY OF ISOLATED HYPERSURFACE SINGULARITIES[J].Chinese Annals of Mathematics B,1993,14(4):497~506
Page view: 871        Net amount: 770

Authors:

Xiao Erjian;
Abstract: The author defines, using jets, cohomology $H^p(\Lambda _{f,k-})$ for hypersurfaces, which are invariant under contact transformations. For isolated hypersurface singularities, it is proved that $H^0(\Lambda _{f,k-})=O_{U,0}/f^{k+1}O_{U,0},$ $H^p(\Lambda _{f,k-})=0,1\leq p \leq N-3 or p=N,$ $dimH^{N-2}(\Lambda _{f,k-})-dimH^{N-1}(\Lambda _{f,k-})=\[\left( {\begin{array}{*{20}{c}} k \ N \end{array}} \right)\dim {O_{U,0}}/(f,\frac{{\partial f}}{{\partial {x_1}}}, \cdots ,\frac{{\partial f}}{{\partial {x_N}}}){O_{U,0}}\] $ The algorithm of computation for H^{N-2} and H^{N-1} is given, and it is proved that $H^{N-1}=0$ when f is quasi-homogeneous.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持