HOMOLOGICAL PROPERTIES OF TORSION CLASSES UNDER CHANGE OF RINGS

Citation:

Yao Musheng.HOMOLOGICAL PROPERTIES OF TORSION CLASSES UNDER CHANGE OF RINGS[J].Chinese Annals of Mathematics B,1994,15(1):1~8
Page view: 1023        Net amount: 779

Authors:

Yao Musheng;
Abstract: Let $R$ be a ring with identity, $x$ be a central element of $R$ which is neither a unit nor a zero divisor. $S=R/xR$ is the quotient ring of $R$ and $\varphi :R\to R/xR$ is the natural map. $R$-Mod\, (resp. $S$-Mod) denotes the category of unital left $R$-modules(resp. $S$-modules). In this paper, relationships betwee torsion theories on $R$-Mod and torsion theories on $S$-Mod are investigated. Properties of the functor Ext$^n_R(N,-)$ are given. Properties of the localization functor $Q_{\si}$are also investigated.

Keywords:

Ring, Torsion theory, Module, Homological proprties

Classification:

16E30
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持