A NEW LAPLACIAN COMPARISON THEOREM AND THE ESTIMATE OF EIGENVALUES

Citation:

Ding Qing.A NEW LAPLACIAN COMPARISON THEOREM AND THE ESTIMATE OF EIGENVALUES[J].Chinese Annals of Mathematics B,1994,15(1):35~42
Page view: 1338        Net amount: 782

Authors:

Ding Qing;

Foundation:

Project supported partially by the Science Foundation of State Education Commission and the National Natural Science Foundation of China
Abstract: This paper establishes a new Laplacian comparison theorem which is specially useful to the manifolds of nonpositive curvature. It leads naturally to the corresponding heat kernel comparison and eigenvalue comparison theorems. Furthermore, a lower estimate of $L^2$-spectrum of an $n$-dimensional non-compact complete Cartan-Hadamard manifold is given by $(n-1)k/4$, provided its Ricci curvature $\le-(n-1)k$ $(k=\roman {const.}\ge 0)$.

Keywords:

Laplacian operator, Comparison theorem, Heat kernel, Eigenvalue.

Classification:

53C21,58G25
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持