CONSTRUCTION OF INDECOMPOSABLE DEFINITE HERMITIAN FORMS

Citation:

Zhu Fuzu.CONSTRUCTION OF INDECOMPOSABLE DEFINITE HERMITIAN FORMS[J].Chinese Annals of Mathematics B,1994,15(3):349~360
Page view: 1046        Net amount: 864

Authors:

Zhu Fuzu;
Abstract: This paper gives a method to construct indecomposable positive definite integral Hermitian forms over an imaginary quadratic field $Q(\sqrt{-m})$ with given discriminant and given rank. It is shown that for any natural numbers $n$ and $a$, there are $n$-ary indecomposable positive definite integral Hermitian lattices over $Q(\sqrt{-1})$ (resp. $Q(\sqrt{-2}))$ with discriminant $a$, except for four (resp. one) exceptions. In these exceptional cases there are no lattices with the desired properties.

Keywords:

Indecomposable lattice (form), Minimum of a lattice (form), Minimal vector,Irreducible vector.

Classification:

11E41
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持