ADMISSIBLE ESTIMATES IN THE IMPORTANT CLASS OFESTIMATES OF THE COVARIANCE MATRIX

Citation:

Xie Minyu.ADMISSIBLE ESTIMATES IN THE IMPORTANT CLASS OFESTIMATES OF THE COVARIANCE MATRIX[J].Chinese Annals of Mathematics B,1994,15(4):435~442
Page view: 1016        Net amount: 799

Authors:

Xie Minyu;

Foundation:

Project supported by the National Natural Science Foundation of China
Abstract: Let $X_1,\cdots,X_N$ (where $N>m$) be independent $N_m(\mu,\Si)$ random vectors, and put $$\overline X=\frac 1{N}\dsize\sum_{i=1}^N X_i\ \roman{and}\ \ T'T=A=\dsize\sum_{i=1}^N (X_i-\overline X)(X_i-\overline X)',$$ where $T$ is upper- triangular with positive diagonal elements. The author considers the problem of estimating $\Si$ ,and restricts his attention to the class of estimates $\Bbb D=\{T'\bi^{\ast}T +Nb^{\ast}\overline X\,\overline X$':$\bi^{\ast}$ is any diagonal matrix and $ b^{\ast} $ is any nonnegative constant\} because it has the following attractive features: (a) Its elements are all quadratic forms of the sufficient and complete statistics $(\overline X,T)$. (b) It contains all estimates of the form $aA+Nb\overline X\,\overline X'$ ($a\ge 0$ and $b\ge 0$), which construct a complete subclass of the class of nonnegative quadratic estimates $\Bbb D^{*}=\{X'BX: B\ge 0\}$ (where $X=(X_1,\cdots,X_N)'$) for any strict convex loss function. (c) It contains all invariant estimates under the transformation group of upper-triangular matrices. The author obtains the characteristics for an estimate of the form $$T'\bi T+ Nb\overline X\,\overline X'\,(\bi =\roman{diag}\{\de_1,\cdots,\de_m\} \ge 0\ \ \roman{and}\ b\ge 0)$$ of $\Sigma $ to be admissible in $\Bbb D $ when the loss function is chosen as tr$(\Si^{-1}\widehat \Si-I)^2$, and shows, by an example, that $aA+Nb\overline X\,\overline X'$ ($a\ge 0$ and $b\ge 0$) is admissible in $\Bbb D^* $ can not imply its admissibility in $\Bbb D$.

Keywords:

Covariance matrix, Admissible estimate, Bartlett's decomposition.

Classification:

62C15, 62H12.
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持