DISTRIBUTION OF THE ${\boldkey (}{\boldkey 0},{\boldsymbol\infty}{\boldkey )}$ ACCUMULATIVE LINES OF MEROMORPHIC FUNCTIONS

Citation:

Wu Shengjian.DISTRIBUTION OF THE ${\boldkey (}{\boldkey 0},{\boldsymbol\infty}{\boldkey )}$ ACCUMULATIVE LINES OF MEROMORPHIC FUNCTIONS[J].Chinese Annals of Mathematics B,1994,15(4):453~462
Page view: 1150        Net amount: 892

Authors:

Wu Shengjian;
Abstract: Suppose that $f(z)$ is a meromorphic function of order $\la\, (0<\la<+\i)$ and of lower order $\mu$ in the plane. Let $\rho$ be a positive number such that $\mu\le \rho\le\la.$ (1) If $f^{(l)}(z)\, (0\le l < +\i)$ has $p\, (1\le p<+\i)$ finite nonzero deficient values $a_i\,(i=1,\cdots, p)$ with deficiencies $\delta(a_i, f^{(l)})$, then $f(z)$ has a $(0,\i)$ accumulative line of order $\ge \rho$ in any angular domain whose vertex is at the origin and whose magnitude is larger than $$\max \left ({\frac \pi \rho},2\pi-{4\over \rho}\sum_{i=1}^p \arcsin \sqrt{\frac {\delta(a_i,f^{(l)})} 2}\right ). $$ (2) If $f(z)$ has only $p\,(0

Keywords:

Meromorphic function, Accumulative line, Order.

Classification:

32A20, 30D35.
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持