ON THE UPPER ESTIMATES OF FUNDAMENTAL SOLUTIONS OFPARABOLIC EQUATIONS ON RIEMANNIAN MANIFOLDS

Citation:

Li Jiayu,Shao Xin.ON THE UPPER ESTIMATES OF FUNDAMENTAL SOLUTIONS OFPARABOLIC EQUATIONS ON RIEMANNIAN MANIFOLDS[J].Chinese Annals of Mathematics B,1995,16(1):119~130
Page view: 1024        Net amount: 718

Authors:

Li Jiayu; Shao Xin
Abstract: The authors first derive gradient estimates and Harnack inequalities for positive solutions of the equation $$ \De u(x,t) + b(x,t) \cdot \nabla u(x,t) + h(x,t) u(x,t) - \f{\pa u(x,t)}{\pa t} = 0 $$ on complete Riemannian manifolds, and then derive upper bounds of any positive $L^2$ fundamental solution of the equation when $h(x,t)$ and $b(x,t)$ are independent of $t$.

Keywords:

Parabolic equation, Gradient estimate, Harnack inequality, Fundamental solution, Riemannian manifolds.

Classification:

58G35
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持