The HAUSDORFF DIMENSION AND MEASURE OF THE GENERALIZED MORAN FRACTALS AND FOURIER SERIES

Citation:

Ren Fuyao,Liang Jinrong.The HAUSDORFF DIMENSION AND MEASURE OF THE GENERALIZED MORAN FRACTALS AND FOURIER SERIES[J].Chinese Annals of Mathematics B,1995,16(2):153~162
Page view: 1099        Net amount: 654

Authors:

Ren Fuyao; Liang Jinrong
Abstract: This paper studies the Hausdorff dimensions, the Hausdorff measures of generalized Moran fractals and the convergence of the Fourier series of functions defined on some generalized Moran fractals.A general formula is given for the calculation of the Hausdorff dimensions of generalized Moran fractals and it is proved that their Hausdorff measures are finite positive numbers under some conditions. In addition, the authors define an orthonormal system $ \Phi $ of functions defined on generalized Moran$s$-sets $(gMs)$ and discuss the convergence of the Fourier series,with respect to $ \Phi $, of each function $ f(x)\in L^1(gMs,H^s) $.

Keywords:

Haudorff dimension, Hausdorff measure, $s$-set,Differentiation base,Fourier series.

Classification:

28A78
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持