ON SOME CONSTANTS OF QUASICONFORMAL DEFORMATION AND ZYGMUND CLASS

Citation:

Chen Jixiu,Wei Hanbai.ON SOME CONSTANTS OF QUASICONFORMAL DEFORMATION AND ZYGMUND CLASS[J].Chinese Annals of Mathematics B,1995,16(3):325~330
Page view: 1022        Net amount: 765

Authors:

Chen Jixiu; Wei Hanbai
Abstract: A real-valued function $f(x)$ on $ \Re$ belongs to Zygmund class $\Lambda_{*}(\Re)$ if its Zygmund norm $\|f\|_z=\underset{x,t}\to{\inf} \Bigl|\frac {f(x+t)-2f(x)+f(x-t)}t\Bigr|$ is finite. It is proved that when $f\in\Lambda_{*}(\Re)$, there exists an extension $F(z)$ of $f$ to $ H=\{\text{Im}z>0\}$ such that $$\aligned \|\overline {\partial}F\|_{\infty}\le\frac {\sqrt {1+53^2}}{72} \|f\|_z.\endaligned $$ It is also proved that if $f(0)=f(1)=0$, then $$\aligned \max_{x\in [0,1]}|f(x)|\le\!\frac 13\|f\|_z.\endaligned $$

Keywords:

Quasiconformal deformation, Zygmund class, Beurling-Ahlfors extension

Classification:

30C62
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持