EXISTENCE AND NONEXISTENCE OF GLOBAL SOLUTION OF NONLINEAR PARABOLIC EQUATION WITH NONLINEAR BOUNDARY CONDITION

Citation:

Wu Yonghui,Wang Mingxin.EXISTENCE AND NONEXISTENCE OF GLOBAL SOLUTION OF NONLINEAR PARABOLIC EQUATION WITH NONLINEAR BOUNDARY CONDITION[J].Chinese Annals of Mathematics B,1995,16(3):371~378
Page view: 1236        Net amount: 792

Authors:

Wu Yonghui; Wang Mingxin
Abstract: This paper deals with the existence and nonexistence of global positive solution of the following equation: $$ \cases u_t=\nabla(u^{q-1}\nabla u)- \a u^m, \qquad & x\in \o, \ \ t>0,\\dfrac {\partial u}{\partial n} =u^p, &x\in \p\o, \ t>0,\u(x, 0)=u_0(x)>0, &x\in \bar\o,\endcases$$ where $p, q, m, \a$ are parameters with $q\ge 1, \ m, p >0, \a\ge 0. \ \o\subset R^N$ is a bounded domain with $\p\o$ smooth enough, $ N\ge 1.$ The necessary and sufficient conditions for the global existence of solution are obtained.

Keywords:

Nonlinear parabolic equiation, Nonlinear boundary condition, Existence,Blow-up, Subsolution and supersolution

Classification:

35K60
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持