A NEW REGULARITY CLASS FOR THE NAVIER-STOKES EQUATIONS IN Rn

Citation:

H. Beiro da Veiga.A NEW REGULARITY CLASS FOR THE NAVIER-STOKES EQUATIONS IN Rn[J].Chinese Annals of Mathematics B,1995,16(4):407~412
Page view: 1345        Net amount: 979

Authors:

H. Beiro da Veiga;
Abstract: Consider the Navier-Stokes equations in $\R^n\times (0, T),$ for $n\ge 3.$ Let $1<\al\le \min\{2, n/(n-2)\}$ and define $\be$ by $(2/\al)+(n/\be)=2.$ Set $\al'=\al/(\al-1)$. It is proved that $Dv$ belongs to $C(0, T; L^{\al'})\cap L^{\al'}(0, T; L^{2\be/(n-2)})$ whenever $Dv\in L^{\al}(0, T; L^{\be}).$ In particular, $v$ is a regular solution. This results is the natural extension to $\al\in (1,2]$ of the classical sufficient condition that establishes that $L^{\al} (0,T;L^{\ga})$ is a regularity class if $(2/\al)+(n/\ga)=1$. Even the borderline case $\al=2$ is significant. In fact, this result states that $L^2(0,T; W^{1,n})$ is a regularity class if $n\le 4.$ Since $W^{1,n}\hookrightarrow L^{\infty}$ is false, this result does not follow from the classical one that states that $L^2(0,T; L^{\infty})$ is a regularity class.

Keywords:

Navies-Stokes equation, Regularity of solution, Extension

Classification:

35B65, 35K55, 76D05
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持