LARGE-TIME BEHAVIOR OF SOLUTIONS FOR THE SYSTEM OF COMPRESSIBLE ADIABATIC FLOW THROUGH POROUS MEDIA

Citation:

Xiao Ling(L. Hsiao),D. Serre.LARGE-TIME BEHAVIOR OF SOLUTIONS FOR THE SYSTEM OF COMPRESSIBLE ADIABATIC FLOW THROUGH POROUS MEDIA[J].Chinese Annals of Mathematics B,1995,16(4):433~446
Page view: 1194        Net amount: 959

Authors:

Xiao Ling(L. Hsiao); D. Serre
Abstract: Consider the system $$\cases v_t-u_x=0, \\ u_t+p(v, s)_x=-\al u,\ \ \al>0, \\ s_t=0, \endcases \tag1$$ which can be used to model the adiabatic gas flow through porous media. Here $v$ is specific volume, $u$ denotes velocity, $s$ stands for entropy, $p$ denotes pressure with $p_v<0$ for $v>0$. It is proved that the solutions of (1) tend to those of the following nonlinear parabolic equation time-asymptotically: $$ \cases v_t=-\frac1{\al}p(v, s)_{xx}, \\ s_t=0, \\ u=-\frac1{\al}p(v, s)_x. \endcases

Keywords:

Large-time behavior, System of compressible adiabatic flow,Damping mechanism, Nonlinear parabolic equation.

Classification:

35K, 76S05
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持