ANTI-SADDLES OF A POLYNOMIAL SYSTEM

Citation:

Ye Yanqian.ANTI-SADDLES OF A POLYNOMIAL SYSTEM[J].Chinese Annals of Mathematics B,1995,16(4):453~458
Page view: 1167        Net amount: 804

Authors:

Ye Yanqian;
Abstract: By using the generalized Poincar\'e index theorem it is proved that if the $n^2$ critical points of an $n$-polynomial system form a configuration of type $(2n-1)-(2n-3)+(2n-5)-\cdots+(-1)^{n-1},$ and the $2n-1$ outmost anti-saddles form the vertices of a convex $(2n-1)$-polygon, then among these $2n-1$ anti-saddles at least one must be a node.

Keywords:

Polynomial system, Anti-saddle, Poincar\'e index theorem, Equator.

Classification:

34C05
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持