GIRSANOV'S THEOREM ON ABSTRACT WIENER SPACES

Citation:

Zhang Yinnan.GIRSANOV'S THEOREM ON ABSTRACT WIENER SPACES[J].Chinese Annals of Mathematics B,1997,18(1):35~46
Page view: 1068        Net amount: 766

Authors:

Zhang Yinnan;

Foundation:

Project supported by the National Natural Science Foundation of China
Abstract: Let $(E,H,\mu )$ be an abstract Wiener space in the sense of L. Gross. It is proved that if $u$ is a measurable map from $E$ to $H$ such that $u\in {W}^{2.1}(H,\mu )$ and there exists a constant $\alpha$, $0<\alpha <1$, such that either $\sum\limits_ n\|D_nu(w)\|_H^2\le\alpha^2$ a.s. or $\|u(w+h)-u(w)\|_H\le \alpha \|h\|_H$ a. s. for every $h\in H$ and $ E\Big(\text{exp}\Big(\frac{108}{(1-\alpha)^2}\Big(\sum\|D_n u \|_H)\Big)\Big)\Big)<\infty,$ then the measure $\mu\circ T^{-1}$ is equivalent to $\mu$, where $ T(w)=w+u(w)$ for $w\in E$. And the explicit expression of the Radon-Nikodym derivative (cf. Theorem 2.1) is given.

Keywords:

Gaussian measure, Wiener space, Measurable map

Classification:

60B05
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持