SPLIT INCLUSION AND METRICALLY NUCLEAR MAP

Citation:

Wu Liangsen.SPLIT INCLUSION AND METRICALLY NUCLEAR MAP[J].Chinese Annals of Mathematics B,1997,18(1):113~118
Page view: 1025        Net amount: 776

Authors:

Wu Liangsen;

Foundation:

Project supported by the National Natural Science Foundation of China
Abstract: The author relates the split inclusion property to the metrically nuclearty of the natural embedding $\phi_1$ and proves the following result. Let $A\subset B$ be an inclusion of factors, $\omega$ a faithful normal state of $B$ such that $\omega=(\cdot \Omega,\Omega)$. If $\phi_1: A\to L^1(B)$ defined by $\phi_1(x)=(\cdot \Omega,J_Bx\Omega), \forall x\in A,$ is the natural embedding, then $(A,B)$ is a split inclusion if and only if $\phi_1$ is a metrically nuclear map.

Keywords:

Von Neumann algebra, Split inclusion, Metrically nuclear map

Classification:

54C25
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持