ON A MULTILINEAR OSCILLATORY SINGULAR INTEGRAL OPERATOR (I)

Citation:

Chen Wengu,Hu Guoen,Lu Shanzhen.ON A MULTILINEAR OSCILLATORY SINGULAR INTEGRAL OPERATOR (I)[J].Chinese Annals of Mathematics B,1997,18(2):181~190
Page view: 1120        Net amount: 653

Authors:

Chen Wengu; Hu Guoen;Lu Shanzhen

Foundation:

Project supported by the National Natural Science Foundation of China
Abstract: The authors consider the multilinear oscillatory singular integral operator defined by $$ T_{A_1,\,A_2,\,\cdots,\,A_k}f(x)=\int_{{\Bbb R}^n} e^{iP(x,y)}\prod_{j=1}^k R_{m_j}(A_j;\,x,y)\frac {\Omega(x-y)}{|x-y|^{n+M}}f(y)\,dy,$$ where $P(x,y)$ is a real-valued polynomial on ${\Bbb R}^n\times {\Bbb R}^n$, $\Omega$ is homogeneous of degree zero, $R_{m_j}(A_j;\,x,y)$ denotes the $m_j$-th order Taylor series remainder of $A_j$ at $x$ expanded about $y$, $M=\sum^k_{j=1}\limits m_j$. It is shown that if $\Omega$ belongs to the space $L\log^+L(S^{n-1})$ and has vanishing moment up to order $M$, then $$ \|T_{A_1,\,A_2,\,\cdots,\,A_k}f\|_q \le C \prod^k_{j=1}\Big(\sum_{|\alpha|=m_j} \|D^\alpha A_j\|_{r_j}\Big)\|f\|_p,$$ provided that $1

Keywords:

Multilinear operator, Oscillatory singular integral, Maximal operator

Classification:

42B20
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持