THE FOURIER SERIES EXPANSIONS OF FUNCTIONSDEFINED ON S-SETS

Citation:

Liang Jinrong,Li Wanshe,Su Feng,Ren Fuyao.THE FOURIER SERIES EXPANSIONS OF FUNCTIONSDEFINED ON S-SETS[J].Chinese Annals of Mathematics B,1997,18(2):201~212
Page view: 924        Net amount: 694

Authors:

Liang Jinrong; Li Wanshe;Su Feng; Ren Fuyao;
Abstract: Let $ E $ be a compact $s$-sets of $ R^n$. The authors define an orthonormal system $ \Phi $ of functions on $E$ and obtain that, for any $f(x)\in L^1(E, \Cal H^s)$, the Fourier series of $f$, with respect to $\Phi $, is equal to $f(x)$ at $\Cal H^s$-a.e. $x\in E.$ Moreover, for any $ f\in L^p(E,\Cal H^s) \ \ (p\ge 1),$ the partial sums of the Fourier series, with respect to $\Phi$, of $f$ converges to $f$ in $L^p-$norm.

Keywords:

Hausdorff measure, Fourier series, $s$-set, Generalized graph directed construction

Classification:

42A20
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持