ON LARGE INCREMENTS OF l^(p)-VALUED GAUSSIAN PROCESSES

Citation:

Lin Zhengyan.ON LARGE INCREMENTS OF l^(p)-VALUED GAUSSIAN PROCESSES[J].Chinese Annals of Mathematics B,1997,18(2):213~222
Page view: 1063        Net amount: 675

Authors:

Lin Zhengyan;

Foundation:

Project supported by the National and Zhejiang Natural Science Foundations of China
Abstract: Let $\{X_k(t),t\ge0\}, k=1,2,\hdots $, be a sequence of independent Gaussian processes with $\sigma_k^2(h)=E(X_k(t+h)-X_k(t))^2. $\quad Put $\sigma(p,h)=(\sum_{k=1}^\infty\limits\sigma_k^p(h))^{1/p},\ p\ge 1. $ The author establishes the large increment results for bounded $\sigma(p,h). $

Keywords:

$l^p$-valued infinite dimensional Gaussian process, Large increment, a.s. limit

Classification:

60G15, 60G17, 60F15
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持