ON A PROBLEM OF SUMS OF MIXED POWERS (II)

Citation:

Lu Minggao,Yu Gang.ON A PROBLEM OF SUMS OF MIXED POWERS (II)[J].Chinese Annals of Mathematics B,1997,18(2):243~248
Page view: 956        Net amount: 828

Authors:

Lu Minggao; Yu Gang

Foundation:

Project supported by the National Natural Science Foundation of China (Tian Yuan Found)
Abstract: Let $R_{b,c}(n)$ denote the number of representations of $n$ as the sum of one square, four cubes, one $b$-th power and one $c$-th power of natural numbers. It is shown that if $b=4$, $4\le c\le 35$, or $b=5, 5\le c\le 13$, or $b=6, 6\le c\le 9$, or $b=c=7$, then $R_{b,c}(n)\gg n^{5/6+1/b+1/c}$ for all sufficiently large $n$.

Keywords:

Mixed power, Warings problem and variants, Asymptotic formulae

Classification:

11A
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持