BERGMAN TYPE OPERATOR ON MIXED NORM SPACES WITH APPLICATIONS

Citation:

Ren Guangbin,Shi Jihuai.BERGMAN TYPE OPERATOR ON MIXED NORM SPACES WITH APPLICATIONS[J].Chinese Annals of Mathematics B,1997,18(3):265~276
Page view: 1128        Net amount: 709

Authors:

Ren Guangbin; Shi Jihuai

Foundation:

the National Natural Science Foundation of China and the Doctoral Program Fundation of the State Education Commission of China
Abstract: The authors investigate the conditions for the boundedness of Bergman type operators $ P_{s,t} $ in mixed norm space $ L_{p,q}(\varphi) $ on the unit ball of $\bold C^n\ (n \geq 1)$, and obtain a sufficient condition and a necessary condition for general normal function $\varphi$, and a sufficient and necessary condition for $$\varphi(r)=(1-r^2)^{\alpha}{\log^{\beta} (2(1-r)^{-1})}\ \ (\alpha>0,\beta\geq 0). $$This generalizes the result of Forelli-Rudin$^{[3]}$ on Bergman operator in Bergman space. As applications, a more natural method is given to compute the duality of the mixed norm space, solve the Gleason's problem for mixed norm space and obtain the characterization of mixed norm space in terms of partial derivatives. Moreover, it is proved that $ f\in L_{\infty,q}^{(0)}(\varphi) $ iff all the functions $ {(1-|z|^2)^{|\alpha|}}{\frac {\partial^{|\alpha|}f}{\partial z^{\alpha}}}(z)\in L_{\infty,q}^{(0)}(\varphi) $ for holomorphic function $f$, $ 1\le q\le {\infty}. $

Keywords:

Bergman projection, Normal function, Mixed norm space

Classification:

32A30, 47B38
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持