ITERATION OF FIXED POINTS ON HYPERSPACES

Citation:

Hu Thakyin,Huang Juichi.ITERATION OF FIXED POINTS ON HYPERSPACES[J].Chinese Annals of Mathematics B,1997,18(4):423~428
Page view: 977        Net amount: 694

Authors:

Hu Thakyin; Huang Juichi

Foundation:

the National Natural Science Foundation of China
Abstract: Let $X$ be a compact, convex subset of a Banach space $E$ and $CC(X)$ be the collection of all non-empty compact, coonvex subset of $X$ equipped with the Hausdorff metric $h.$ Suppose $\Cal K$ is a compact, convex subset of $CC(X)$ and $T:(\Cal K, h)\to (\Cal K, h)$ is a nonexpansive mapping. Then for any $A_0\in \Cal K,$ the sequence $\{ A_n\}$ defined by $A_{n+1}=(A_n+TA_n)/2$ converges to a fixed point of $T.$ The special case that $\Cal K$ consists of singletons only yields results previously obtained by H. Schaefer, M. Edelstein and S. Ishikawa respectively.

Keywords:

Iteration process, Fixed point, Hyperspace,Nonexpansive mapping

Classification:

47H10, 54B20
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持