ERGODIC THEOREMS FOR NON-LIPSCHITZIAN SEMIGROUPS WITHOUTCONVEXITY

Citation:

Li Gang,Ma Jipu.ERGODIC THEOREMS FOR NON-LIPSCHITZIAN SEMIGROUPS WITHOUTCONVEXITY[J].Chinese Annals of Mathematics B,1998,19(2):209~216
Page view: 1011        Net amount: 664

Authors:

Li Gang; Ma Jipu

Foundation:

Project supported by the National Natural Science Foundation of China and the Science Foundation of Jiansu Province.
Abstract: Let $G$ be a semitopological semigroup. Let $C$ be a nonempty subset of a Hilbert space and $ \Im =\{T_{t}:t\in G \} $ be a representation of $G$ as asymptotically nonexpansive type mappings of $C$ into itself such that the common fixed point set $ F(\Im)$ of $\Im$ in $C$ is nonempty. It is proved that $ \bigcap \limits_{s\in G} \overline{\text{co}} \{T_{ts}x:t\in G\}\bigcap F(\Im)$ is nonempty for each $ x \in C $ if and only if there exists a nonexpansive retraction $P$ of $C$ onto $F(\Im)$ such that $ PT_{s}=T_{s}P =P $ for all $ s\in G $ and $P(x)$ is in the closed convex hull of $ \{T_{s}x: s\in G \} $, $ x\in C $. This result shows that many key conditions in [1--4, 9, 12--15 ] are not necessary.

Keywords:

Nonlinear ergodic theorem, Non-lipschitzian mappings, Semigroup mappings, Semigroup

Classification:

47H09, 47H10
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持