CONVERGENCE ON RANDOMLY TRIMMED SUMS WITH A DEPENDENT SAMPLE

Citation:

Lin Zhengyan.CONVERGENCE ON RANDOMLY TRIMMED SUMS WITH A DEPENDENT SAMPLE[J].Chinese Annals of Mathematics B,1998,19(3):281~292
Page view: 975        Net amount: 768

Authors:

Lin Zhengyan;

Foundation:

Project supported by the National Natural Science Foundation of China and the Natural Science Foundation of Zhejiang Province.
Abstract: Let $ \{X_n\} $ be a sequence of random variables and $ X_{n1}\le{X_{n2}}\le\cdots \le{X_{nn}} $ their order statistics. In this paper a central limit theorem and a strong law of large numbers for randomly trimmed sums $T_n =\sum_{i=\alpha_n+1}^{\beta_n}\limits X_{ni}$ are established in the case that $\alpha_n$ and $\beta_n$ are positive integer-valued random variables such that $\alpha_n/n$ and $\beta_n/n$ converge to random variables $\alpha$ and $\beta$ respectively with $0\le\alpha<\beta\le1$ in certain sense, and $\{X_n\}$ is a $\varphi$-mixing sequence.

Keywords:

Randomly trimmed sums, $\varphi$-mixing, a.s.convergence, Asymptotic normality

Classification:

60F05, 60G50
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持