THE ABSTRACT CAUCHY PROBLEM AND A GENERALIZATION OF THE LUMER-PHILLIPS THEOREM

Citation:

Li Yangrong.THE ABSTRACT CAUCHY PROBLEM AND A GENERALIZATION OF THE LUMER-PHILLIPS THEOREM[J].Chinese Annals of Mathematics B,1998,19(3):349~358
Page view: 1201        Net amount: 890

Authors:

Li Yangrong;
Abstract: For injective, bounded operator $C$ on a Banach space $X$, the author defines the $C$-dissipative operator, and then gives Lumer-Phillips characterizations of the generators of quasi-contractive $C$-semigroups, where a $C$-semigroup $T(\cdot)$ is quasi-contractive if $\|T(t)x\|\le \|Cx\|$ for all $t\ge 0$ and $x\in X$. This kind of generators guarantee that the associate abstract Cauchy problem $u'(t,x)=Au(t,x)$ has a unique nonincreasing solution when the initial data is in $C(D(A))$ (here $D(A)$ is the domain of $A$). Also, the generators of quasi-isometric $C$-semigroups are characterized

Keywords:

Semigroups of operators, $C$-semigroups, Dissipative operators, Abstract Cauchy problems

Classification:

47D03, 47D06
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持