THE ZEROS AND ORDER OF MEROMORPHIC SOLUTIONS OF f^(k)+B*f=H(z)

Citation:

Chen Zongxuan,Yu Jiarong.THE ZEROS AND ORDER OF MEROMORPHIC SOLUTIONS OF f^(k)+B*f=H(z)[J].Chinese Annals of Mathematics B,1998,19(4):433~444
Page view: 916        Net amount: 740

Authors:

Chen Zongxuan; Yu Jiarong

Foundation:

the National Natural Science Foundation of China
Abstract: Suppose that $B$ is a rational function having a pole at $\infty$ of order $n>0$ and that $H\nequiv 0$ is a meromorphic function satisfying $\si(H)=\be\not=(n+k)/k.$ If the differential equation $f^{(k)}+Bf=H(z)$ has a meromorphic solution $f$, then all meromorphic solutions $f$ satisfy $$\bar{\la}(f)=\la(f)=\si(f)=\max\{\be, (n+k)/k\},$$ except at most one exceptional meromorphic solution $f_0.$

Keywords:

Linear differential equation, Meromorphic solution, Zero,Order

Classification:

34A20, 30D35
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持