ON THE DIOPHANTINE EQUATION X4-Dy2=1(II)

Citation:

ko chao,sun chi.ON THE DIOPHANTINE EQUATION X4-Dy2=1(II)[J].Chinese Annals of Mathematics B,1980,1(1):83~89
Page view: 873        Net amount: 744

Authors:

ko chao; sun chi
Abstract: For the Diophantine equation x^4 — Dy^2 = 1 (1) where D>0 and is not a perfect square, we prove the following theorems in this paper. Theorem 1. If D\[{\not \equiv }\]7 (mod 8),D=p1p2...ps,s≥2,where pi(i = 1,…,s) are distincyt primes,p1≡1(mod 4) such that either 2p1=a^2+b^2,а≡\[ \pm \]3(mod 8),b三\[ \pm \]3(mod 8) or there is a j(2≤j≤s), for which Legendre symbal \[\left( {\frac{{{p_j}}}{{{p_1}}}} \right) = - 1\],and pi≡7(mod8) (i=2,..., s) or pi≡3(mod 8) (i=2,..., s), then (1) has no solutions in positive integer x,y. Theorem 2. If D=p1...ps,s≥2, where pi(i = 1,…,s) are distinct primes, and pi≡3(mod 4)(i = 1,…,s), then (1) has no solutions in positive integer x, y. Theorem 3. The equation (1) with D=2p1...ps has no solutions in positive integer x, y, if (1) p1≡(mod 4), pi≡7(mod 8) (i = 2, ???, s), snch that either 2p1 = a^2+b^2 a≡\[ \pm \]3(mod 8),b≡\[ \pm \]3(mod 8)or there is a j (2≤j≤s),for which \[\left( {\frac{{{p_j}}}{{{p_1}}}} \right) = - 1\]; or (2) p1≡5(mod8),pi≡3(mod8) (i = 2,..., s); or ⑶p1≡5(mod8),pi≡7(mod 8) (i=2,…,s). Corollary of theorem 3. If D = 2pq, p≡5(mod 8), q≡3(mod 4), where p, q are distinct primes, then (1) has no solutions in positive integer x, y. Theorem 4. If D=2p1...ps, pi≡3(mod 4)(0 = 1,...,s), then (1) has no solutions In positive integer x, y.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持