THE SOLUTION OF THE CAUCHY PROBLEM FOR A WAVEEQUATION WITH VARIABLE COEFFICIENTS

Citation:

Lu QIkENG,Yin Weiping.THE SOLUTION OF THE CAUCHY PROBLEM FOR A WAVEEQUATION WITH VARIABLE COEFFICIENTS[J].Chinese Annals of Mathematics B,1980,1(1):115~129
Page view: 863        Net amount: 818

Authors:

Lu QIkENG; Yin Weiping
Abstract: Let \[{\mathfrak{M}_k}\] denote the space of Lorentz witb. constant curvature: \[1 + {K_{\eta pq}}{x^p}{x^q}\] where K is a constant and \[\eta = ({\eta _{pq}})\]=diag [1,... 1,-1], We have considered the wave equation with variable coefficients \[\frac{\partial }{{\partial {x^j}}}(\sqrt {|\tilde g|} ){{\tilde g}^{jk}}\frac{{\partial u}}{{\partial {x^k}}}) = 0\] in \[{\mathfrak{M}_k}\] where \[|\tilde g| = |1 + {K_{\eta pq}}{x^p}{x^q}{|^{ - (n + 1)}},{{\tilde g}^{jk}} = (1 + {K_{\eta pq}}{x^p}{x^q})({\eta _{jk}} + K{x^j}{x^k})\] and found the explicit solution of the Cauchy problem for equation (1)

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持