THE DECOMPOSITION THEOREM OF A PROBABILITY-FLOW

Citation:

HOU ZHENTING,WANG PEIHUANG.THE DECOMPOSITION THEOREM OF A PROBABILITY-FLOW[J].Chinese Annals of Mathematics B,1980,1(1):139~148
Page view: 863        Net amount: 940

Authors:

HOU ZHENTING; WANG PEIHUANG
Abstract: suppose that p is a Markov transition matrix on the sapce E,and {ui}(\[i \in E\])is an initial distribution.The Matrix (ui,pij)is called a probility-flow.we obtain the following theorem:For any initial distribution {ui}(ui>0)which need not be stationary,we have \[{u_i}{p_{ij}} = {u_i}{p_{ij}}^d + \sum\limits_{k \in K} {{r_{ij}}^{(k)}} + \sum\limits_{i \in L} {{g_{ij}}^{(l)}} \] where, 1) \[{u_i}{p_{ij}}^d = {u_i}{p_{ij}}^d(i,j \in E)\] \[{p_{ij}}^d\]is called the detailed balabce part of p; 2)For each \[k \in K\](at most denumerable),there is a circular road \[{a^{(k)}} = (i_1^{(k)},i_2^{(k)},...,i_n^{(k)},i_1^{(k)})\](\[n \geqslant 3,{i_s} \ne {i_t}(S \ne t,1 \leqslant S,t \leqslant n\]),and there is a constant \[{c_k} > 0\],such that \[{r_{ij}}^{(k)} = \left\{ {\begin{array}{*{20}{c}} {{c_k},(i,j) \in {a^{(k)}}} \\ {0,(else)} \end{array}} \right.\] and \[\sum\limits_{k \in K} {{r_{ij}}^{(k)}} \] is called the circulation part of p; 3)For any \[l \in L\](at most denumerable),there is a read in E; \[{r^{(l)}} = (j_1^{(1)},...,j_n^{(l)})\] \[n \geqslant 2,{j_s}^{(l)} \ne {j_t}^{(l)}(s \ne t,l \leqslant s,t \leqslant n)\],and there is a constant \[{d_l} > 0\],such that \[{g_{ij}}^{(l)} = \left\{ {\begin{array}{*{20}{c}} {{d_l},(i,j) \in {r^l}} \\ {0,(else)} \end{array}} \right.\] and \[\sum\limits_{i \in L} {{g_{ij}}^{(l)}} \]is called the divergent part of p. This theorem is extetion of the theorem of circulation decomposition given by Qian Minping.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持