|
| |
A FINITE STRUCTURE THEOREM BETWEENPRIMITIVE RINGS AND ITS APPLICATIONTO GALOIS THEORY |
| |
Citation: |
SHU Yong-HuA.A FINITE STRUCTURE THEOREM BETWEENPRIMITIVE RINGS AND ITS APPLICATIONTO GALOIS THEORY[J].Chinese Annals of Mathematics B,1980,1(2):183~197 |
Page view: 794
Net amount: 858 |
Authors: |
SHU Yong-HuA; |
|
|
Abstract: |
设\[\mathfrak{M} = \sum {F{u_i}} \]是除环F上向量空间,P是F的一个子除环且在F中是Galois,即存
在F的一个自同构群G使\[I(G) = P\].记Ф是F的中心,\[{G_0}\]是属于G的内自同构群,
\[{G_0}\]的元素记为\[{I_r},r \in F\];,记\[{E^'} = \sum\limits_{{I_{{r_j}}} \in {G_0}} {{\Phi _{{r_j}}}} \]是G的代数,\[P' = {C_F}({E^'})\]是\[{E^'}\]在F中的中心化子.记\[\mathfrak{U}(F,\mathfrak{M})\]是\[\mathfrak{M}\]的F-线性变换完全环,\[{T_v}(F,\mathfrak{M})\]是\[\mathfrak{U}(F,\mathfrak{M})\]中所有秩小于\[\mathcal{X}{_v}\]的元素集合,那末我们有如下主要结果:
(1)\[{[F:P']_L} = n\]有限当且仅当\[{T_v}(P',\mathfrak{M}) = \sum\limits_{j = 1}^n \oplus {r_{jL}}{T_v}(F,\mathfrak{M})\],其中\[{r_j} \in {E^'}\],\[{r_{jL}}\]表示元素\[{r_j}\]的标量左乘.
(2)\[{[P':P]_L} = t\]有限当且仅当凡\[{T_v}(P,\mathfrak{M}) = \sum\limits_{j = 1}^t \oplus {S_j}{T_v}(P',\mathfrak{M})\],其中\[{S_j}\]表示\[\mathfrak{M}\]的F-半线变换自同构,它的伴随同构\[{\psi _j} \in G\].
⑶如有某个序数v使\[{T_v}(P,\mathfrak{M})\],\[{T_v}(P',\mathfrak{M})\]及\[{T_v}(F,\mathfrak{M})\]满足⑴及(2)中的关系
式,那末对任何\[{T_\mu }(P,\mathfrak{M})\],\[{T_\mu }(P',\mathfrak{M})\]及\[{T_\mu }(F,\mathfrak{M})\]皆满足(1)及(2)中的关系式.特别
对\[\mathfrak{U}(P,\mathfrak{M})\],\[\mathfrak{U}(P',\mathfrak{M})\]及\[\mathfrak{U}(F,\mathfrak{M})\]也是如此.
⑷如果\[{[F:P]_L}\]有限,那末必有\[{C_p}({C_F}(E')) = E'\],\[{[F:P']_L} = \dim E'\],\[{[P':P']_L} = [G/{G_0}]\],其中dim E'表示E'在\[\Phi \]上的维数,\[[G/{G_0}]\]表示\[{G_0}\]在G中的指数,特别\[G\]是 Galois 群,则 \[{C_F}(P') = {C_F}(P) = E'\].
(5)若\[{\tilde G}\]是F的另一自同构群且\[I(G) = I(\tilde G)\],那末必有\[[G/{G_0}] = [\tilde G/{{\tilde G}_0}]\],
\[\dim {\kern 1pt} {\kern 1pt} E' = \dim {\kern 1pt} {\kern 1pt} \tilde E'\]. 其中\[{\kern 1pt} \tilde E'\]表示\[{\tilde G}\]的代数.
如果P取为F的中心时,于是从上述结果(1)就得出熟知的定理:\[[F:\Phi ]\]是有限的当
且仅当\[\mathfrak{U}(\Phi ,\mathfrak{M}) = \mathfrak{U}(F,\mathfrak{M}){ \otimes _\Phi }{F_L}\].
另方面,运用我们上述的结果,可导出除环F的有限Galois理论. |
Keywords: |
|
Classification: |
|
|
Download PDF Full-Text
|
|
|
|