CONSTRUCTIVE PROPERTIES OF A KIND OF UNIFORMLYALMOST PERIODIC FUNCTIONS

Citation:

CHENG NAID0NG.CONSTRUCTIVE PROPERTIES OF A KIND OF UNIFORMLYALMOST PERIODIC FUNCTIONS[J].Chinese Annals of Mathematics B,1980,1(2):214~222
Page view: 888        Net amount: 894

Authors:

CHENG NAID0NG;
Abstract: In this paper,we have discussed constructive properties of a kind of uniformly almost periodic functions, of which the sequence of its Fourier exponents has unique limit point at infinity. \[\begin{gathered} f(x) \sim \sum\limits_{k = - \infty }^\infty {{A_k}} {e^{i{\Lambda _k}x}} \hfill \ {\Lambda _0} = \alpha ,0 < \alpha \leqslant {\Lambda _k} < {\Lambda _{k + 1}}(k = 0,1,2,...) \hfill \ \mathop {\lim }\limits_{k \to \infty } {\Lambda _k} = \infty ,{\Lambda _k} = - {\Lambda _k} \hfill \ |{\Lambda _k}| + |{\Lambda _{ - k}}| > 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (k \ne 0) \hfill \\ \end{gathered} \] Analogons to the approximation theory of periodic functioiis, we get some theorems similar to the Jackson theorem, Bernstein theorem and Zygmund theorem of periodio functions.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持