|
| |
BEST SIMULTANEOUS Lp APPROXIMATION |
| |
Citation: |
SHI YINGGUANG.BEST SIMULTANEOUS Lp APPROXIMATION[J].Chinese Annals of Mathematics B,1980,1(2):235~244 |
Page view: 779
Net amount: 634 |
Authors: |
SHI YINGGUANG; |
|
|
Abstract: |
In this paper we discuss the exigtenoe of best simultaneous Lp approximation and
give the characterization theorems of best simultaneous Lp approximation using the
elements of an arbitrary quasioonvex set K in the space \[{L_p}(X,\sum ,\mu )\], A set \[K \subset {L_p}(X,\sum ,\mu )\]
is called quasiconvex if for arbitrary elements \[{h_1},{h_2} \in K\] there exists a sequenoe \[{t_n} > 0\] (n = l, 2, ...), \[{t_n} > 0\]->0 (n—>∞) such that \[{t_n}{h_1} + (1 - {t_n}){h_2} \in \bar K(n = 1,2,...)\]
where \[{\bar K}\] denotes a closure of K. |
Keywords: |
|
Classification: |
|
|
Download PDF Full-Text
|
|
|
|