2025年5月3日 星期六

 
BEST SIMULTANEOUS Lp APPROXIMATION

Citation:

SHI YINGGUANG.BEST SIMULTANEOUS Lp APPROXIMATION[J].Chinese Annals of Mathematics B,1980,1(2):235~244
Page view: 779        Net amount: 634

Authors:

SHI YINGGUANG;
Abstract: In this paper we discuss the exigtenoe of best simultaneous Lp approximation and give the characterization theorems of best simultaneous Lp approximation using the elements of an arbitrary quasioonvex set K in the space \[{L_p}(X,\sum ,\mu )\], A set \[K \subset {L_p}(X,\sum ,\mu )\] is called quasiconvex if for arbitrary elements \[{h_1},{h_2} \in K\] there exists a sequenoe \[{t_n} > 0\] (n = l, 2, ...), \[{t_n} > 0\]->0 (n—>∞) such that \[{t_n}{h_1} + (1 - {t_n}){h_2} \in \bar K(n = 1,2,...)\] where \[{\bar K}\] denotes a closure of K.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持