A Criterion of Nonparabolicity by the Ricci Curvature*

Citation:

Qing DING,Xiayu DONG.A Criterion of Nonparabolicity by the Ricci Curvature*[J].Chinese Annals of Mathematics B,2022,43(5):739~748
Page view: 451        Net amount: 408

Authors:

Qing DING; Xiayu DONG

Foundation:

National Natural Science Foundation of China (Nos.12071080, 12141104).
Abstract: A complete manifold is said to be nonparabolic if it does admit a positive Green’s function. To ?nd a sharp geometric criterion for the parabolicity/nonparbolicity is an attractive question inside the function theory on Riemannian manifolds. This paper devotes to proving a criterion for nonparabolicity of a complete manifold weakened by the Ricci curvature. For this purpose, we shall apply the new Laplacian comparison theorem established by the ?rst author to show the existence of a non-constant bounded subharmonic function.

Keywords:

Nonparabolicity, Subharmonic function, Ricci curvature

Classification:

58E20, 58J32, 53C43, 53C20, 31C12
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持