Multiple Nontrivial Solutions for Superlinear Double Phase Problems Via Morse Theory*

Citation:

Bin GE,Beilei ZHANG,Wenshuo YUAN.Multiple Nontrivial Solutions for Superlinear Double Phase Problems Via Morse Theory*[J].Chinese Annals of Mathematics B,2023,44(1):49~66
Page view: 847        Net amount: 736

Authors:

Bin GE; Beilei ZHANG;Wenshuo YUAN

Foundation:

National Natural Science Foundation of China (No. 11201095), the Fundamental Research Funds for the Central Universities (No. 3072022TS2402), the Postdoctoral research startup foundation of Heilongjiang (No. LBH-Q14044) and the Science Research Funds for Overseas Returned Chinese Scholars of Heilongjiang Province (No. LC201502).
Abstract: The aim of this paper is the study of a double phase problems involving superlinear nonlinearities with a growth that need not satisfy the Ambrosetti-Rabinowitz condition. Using variational tools together with suitable truncation and minimax techniques with Morse theory, the authors prove the existence of one and three nontrivial weak solutions, respectively.

Keywords:

Double phase problems, Musielak-Orlicz space, Variational method,Critical groups, Nonlinear regularity, Multiple solution

Classification:

35J92, 35J60, 35D05
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持