2025年5月9日 星期五

 
Difference Independence of the Euler Gamma Function*

Citation:

Qiongyan WANG,Xiao YAO.Difference Independence of the Euler Gamma Function*[J].Chinese Annals of Mathematics B,2023,44(4):481~488
Page view: 1452        Net amount: 901

Authors:

Qiongyan WANG; Xiao YAO

Foundation:

This work was supported by the National Natural Science Foundation of China (No. 11901311).
Abstract: In this paper, the authors established a sharp version of the difference ana logue of the celebrated H¨older’s theorem concerning the differential independence of the Euler gamma function Γ. More precisely, if P is a polynomial of n + 1 variables in C[X, Y0, · · · , Yn-1] such that P(s,Γ(s + a0), · · · , Γ(s + an-1)) ≡ 0 for some (a0, · · · , an-1) ∈ Cn and ai - aj /∈ Z for any 0 ≤ i < j ≤ n -1, then they have P ≡ 0. Their result complements a classical result of algebraic differential independence of the Euler gamma function proved by H¨older in 1886, and also a result of algebraic difference independence of the Riemann zeta function proved by Chiang and Feng in 2006.

Keywords:

Algebraic difference independence, Euler gamma function, Algebraic difference equations

Classification:

11M06, 39A05
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持