ON THE CONVERGENCE OF THE PARABOLIC APPROXIMATION OF A CONSERVATION LAW IN SEVERAL SPACE DIMENSIONS

Citation:

T. GALLOU\"ET,F. HUBERT.ON THE CONVERGENCE OF THE PARABOLIC APPROXIMATION OF A CONSERVATION LAW IN SEVERAL SPACE DIMENSIONS[J].Chinese Annals of Mathematics B,1999,20(1):7~10
Page view: 989        Net amount: 660

Authors:

T. GALLOU\"ET; F. HUBERT
Abstract: The authors give a proof of the convergence of the solution of the parabolic approximation $u^\eps_t+\div f(x,t,u^\eps)=\eps \lap u^\eps$ towards the entropic solution of the scalar conservation law $u_t+\div f(x,t,u)=0$ in several space dimensions. For any initial condition $u_0\in L^\infty(\R^N)$ and for a large class of flux $f$, they also prove the strong converge in any $L^p_{\text{loc}}$ space, using the notion of entropy process solution,which is a generalization of the measure-valued solutions of DiPerna.

Keywords:

Convergence, Parabolic approximation, Conservation law

Classification:

35A35, 35K30
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持