SOME NEW FAMILIES OF FILTRATION FOUR IN THE STABLE HOMOTOPY OF SPHERES

Citation:

LIN Jinkun.SOME NEW FAMILIES OF FILTRATION FOUR IN THE STABLE HOMOTOPY OF SPHERES[J].Chinese Annals of Mathematics B,1999,20(1):93~102
Page view: 1063        Net amount: 624

Authors:

LIN Jinkun;

Foundation:

the National Natural Science Foundation of China (No. 19531040)
Abstract: This paper proves the existence of 4 families of nontrivial homotopy elements in the stable homotopy of spheres which are represented by $\alpha_{2} b_{n}$,$\alpha_{2}k_{n}$, $\alpha_{2}g_{n}$ and $\alpha_{2}h_{n}h_{m}$ in the $E_{2}^{4,*}$-terms of the Adams spectral sequence respectively, where $\alpha_{2}$, $b_{n}$, $k_{n}$, $g_{n}$ and $h_{n}h_{m}$ are the known generators in the $E_{2}^{2,*}$-terms whose internal degree are $4(p-1)+1$, $2p^{n+1}(p-1)$, $(4p^{n+1}+2p^{n})(p-1)$,$(2p^{n+1}+4p^{n})(p-1)$, $(2p^{n}+2p^{m})(p-1)$ respectively and $p \geq 5$ is a prime, $m\geq n+2 \geq 4$.

Keywords:

Stable homotopy of spheres, Adams spectral sequence, Derivations of maps, M-module spectra

Classification:

55Q45
Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持